January 19, 2015
Isolation and Characterization of Multipotent and Pluripotent Stem Cells from Human Peripheral Blood
Stem cells are commonly classified based on the developmental stage from which they are isolated, although this has been a source of debate amongst stem cell scientists. A common approach classi- fies stem cells into three different groupings: Embryonic Stem Cells (ESCs), Umbilical Cord Stem Cells (UCBSCs) and Adult Stem Cells (ASCs), which include stem cells from bone marrow (BM), fat tissue (FT), engineered induced pluripotent (IP) and peripheral blood (PB). By definition stem cells are progenitor cells capable of self-renewal and differentiation hypothetically “ab infinitum” into more specialized cells and tissue. The main intent of this study was to determine and charac- terize the different sub-groups of stem cells present within the human PB-SCs that may represent a valid opportunity in the field of clinical regenerative medicine. Stem cells in the isolated mono- nucleated cells were characterized using a multidisciplinary approach that was based on mor- phology, the expression of stem cell markers by flowcytometry and fluorescence analysis, RT-PCR and the capacity to self-renew or proliferate and differentiate into specialized cells. This approach was used to identify the expression of hematopoietic, mesenchymal, embryonic and neural stem cell markers. Both isolated adherent and suspension mononucleated cells were able to maintain their stem cell properties during in-vitro culture by holding their capacity for proliferation and differentiation into osteoblast cells, respectively, when exposed to the appropriate induction me- dium.
January 19, 2015
New Year Message from Editor
The Roman calendar identified January as the month in which looking back and looking forward were both appropriate. Biomedical Research and Therapy (BMRAT) now has one-‐‑year history of publication, following a one-‐‑year period of preparation, and the first volume has been wrapped up. The vital signs of the journal were positive from the beginning and are becoming stronger all the time.
January 27, 2015
Production of islet-like insulin-producing cell clusters in vitro from adipose-derived stem cells
Diabetes mellitus is a high incidence disease that has increased rapidly in recent years. Many new therapies are being studied and developed in order to find an effective treatment. An ideal candidate is stem cell therapy. In this study, we investigated the differentiation of adipose derived stem cells (ADSCs) into pseudo-islets in defined medium in vitro, to produce large quantities of insulin-producing cells (IPCs) for transplantation. ADSCs isolated from adipose tissue were induced to differentiate into islet-like insulin-producing cell clusters in vitro by inducing medium DMEM/F12 containing nicotinamide, N2, B27, bFGF, and insulin-transferrin-selenite (ITS). Differentiated cells were analyzed for properties of IPCs, including storage of Zn 2+ by dithizone staining, insulin production by ELI-SA and immunochemistry, and beta cell-related gene expression by reverse transcriptase PCR. The results showed that after 2 weeks of differentiation, the ADSCs aggregated into cell clusters, and after 4 weeks they formed islets, 50–400 micrometers in diameter. These islet cells exhibited characteristics of pancreatic beta cells as they were positive for dithizone staining, expressed insulin in vitro and C-peptide in the cytoplasm, and expressed pancreatic beta cell-specific genes, including Pdx-1, NeuroD, and Ngn3. These results demonstrate that ADSCs can be used to produce a large number of functional islets for research as well as application.
January 25, 2015
Targeting specificity of dendritic cells on breast cancer stem cells: In vitro and in vivo evaluations
Breast cancer is a leading cause of death in women, and almost all complications are due to chemotherapy resistance. Drug-resistant cells with stem cell phenotypes are thought to cause failure in breast cancer chemotherapy. Dendritic cell (DC) therapy is a potential approach to eradicate these cells. This study evaluates the specificity of DCs for breast cancer stem cells (BCSCs) in vitro and in vivo. BCSCs were enriched by a verapamil-resistant screening method, and reconfirmed by ALDH expression analysis and mammosphere assay. Mesenchymal stem cells (MSCs) were isolated from allogeneic murine bone marrow. DCs were induced from bone marrow-derived monocytes with 20 ng/mL GC-MSF and 20 ng/mL IL-4. Immature DCs were primed with BCSC-or MSC-derived antigens to make two kinds of mature DCs: BCSC-DCs and MSC-DCs, respectively. In vitro ability of BCSC-DCs and MSC-DCs with cytotoxic T lymphocytes (CTLs) to inhibit BCSCs was tested using the xCELLigence technique. In vivo, BCSC-DCs and MSC-DCs were transfused into the peripheral blood of BCSC tumor-bearing mice. The results show that in vitro BCSC-DCs significantly inhibited BCSC proliferation at a DC:CTL ratio of 1:40, while MSC-DCs nonsignificantly decreased BCSC proliferation. In vivo, tumor sizes decreased from 18.8% to 23% in groups treated with BCSC-DCs; in contrast, tumors increased 14% in the control group (RPMI 1640) and 47% in groups treated with MSC-DCs. The results showed that DC therapy could target and be specific to BCSCs. DCs primed with MSCs could trigger tumor growth. These results also indicate that DCs may be a promising therapy for treating drug-resistant cancer cells as well as cancer stem cells.
February 23, 2015
Optimization of culture medium for the isolation and propagation of human breast cancer cells from primary tumour biopsies
Breast cancer cells from patients hold an important role in antigen production for immunotherapy, drug testing, and cancer stem cell studies. To date, although many studies have been conducted to develop protocols for the isolation and culture of breast cancer cells from tumour biopsies, the efficiencies of these protocols remain low. This study aimed to identify a suitable medium for the isolation and propagation of primary breast cancer cells from breast tumour biopsies. Breast tumour biopsies were obtained from hospitals after all patients had given their written informed consent and were cultured according to the expanding tumour method in 3 different media: DMEM/F12 (Dulbecco's Modified Eagle Medium: Nutrient Mixture F-12) supplemented with 10% FBS (Fetal bovine serum) and 1% antibiotic-antimycotic (Medium D); Medium 171 supplemented with 1X MEGS (Mammary Epithelial Growth Supplement) and 1% antibiotic-antimycotic (Medium M); or a 1:1 mixture of Medium D and Medium M (Medium DB). The cell culture efficiency was evaluated by several criteria, including the time of cell appearance, cell morphology , capability of proliferation, cell surface marker expression, ALDH (Aldehyde dehydrogenases) activity, karyotype, and tumour formation capacity in immune-deficient mice. Notably, primary cancer cells cultured in Medium DB showed a high expression of breast cancer stem cell surface markers (including CD44 + CD24-and CD49f +), low expression of stromal cell surface markers (CD90), high ALDH activity, an abnormal karyotype, and high tumour formation capacity in immune-deficient mice. These findings suggested that Medium DB was suitable to support the survival and proliferation of primary breast cancer cells as well as to enrich breast cancer stem cells. Keywords— Breast cancer cell, breast cancer stem cell, culture medium, primary cancer cell, tumor biopsy.
March 24, 2015
Direct reprogramming of somatic cells: an update
Direct epigenetic reprogramming is a technique that converts a differentiated adult cell into another differentiated cell—such fibroblasts to cardiomyocytes—without passage through an undifferentiated pluripotent stage. This novel technology is opening doors in biological research and regenerative medicine. Some preliminary studies about direct reprogramming started in the 1980s when differentiated adult cells could be converted into other differentiated cells by overexpressing transcription-factor genes. These studies also showed that differentiated cells have plasticity. Direct reprogramming can be a powerful tool in biological research and regenerative medicine, especially the new frontier of personalized medicine. This review aims to summarize all direct reprogramming studies of somatic cells by master control genes as well as potential applications of these techniques in research and treatment of selected human diseases.
June 28, 2015
Stem cell technology and engineering for cancer treatment
Stem cells are not only widely used for regenerative medicine, but are also considered as a useful tool for cancer treatment. For a long time, stem cells have been utilized to renew the immune system for radiation or chemotherapy treated patients. Recently, stem cells are being engineered to carry therapeutic reagents to target tumor sites. Cancer vaccines based on the knowledge of cancer stem cells have been studied and applied for cancer treatment. Induced pluripotent stem cells have been used to create active T cells to support cancer immunotherapy. Those are due to the unique characteristics of stem cells, such as immunological tolerance, migration, and tissue repa-ration. This review discusses stem cell applications in transplantation, stem cell-based carriers, induced-pluripotent stem cells, cancer stem cells, and potential of stem cells engineering to revolutionize cancer treatment.
June 28, 2015
In vitro spontaneous differentiation of human breast cancer stem cells and methods to control this process
Breast cancer is said to originate from breast cancer stem cells (BCSCs). Previous published studies showed that BCSCs exhibited a high degree of multi-drug resistance. This study aimed to evaluate the spontaneous differentiation of human BCSCs and investigate various in vitro conditions that could be used to control this process. BCSCs were sorted from primary cultures of breast malignant tumors based on expression of CD44 and CD24. The in vitro spontaneous differentiation of BCSCs was evaluated using standard DMEM/F12 medium supplemented with 10% fetal bovine serum (FBS) and 1% antibiotic-antimycotic. There were six different methods tried to control the spontaneous differentiation of BCSCs including culturing in serum-free medium, mammosphere medium, basic fi-broblast growth factor and epidermal growth factor supplemented medium with serum, and culturing under hypoxic conditions. The results showed that BCSCs always spontaneously differentiated in vitro in standard DMEM/F12 plus 10% FBS culture medium. All investigated culture conditions could not completely inhibit the spontaneous differentiation of BCSCs. Serum-free culture medium under hypoxic conditions (mammosphere culture) had the strongest inhibitory effect on this process. These results demonstrated that spontaneous differentiation is a natural process of BCSCs; therefore this process may be somewhat controlled depending on the culture conditions
August 25, 2015
A comparison of the chemical and liver extract-induced hepatic differentiation of adipose derived stem cells
Adipose-derived stem cells (ADSCs) have been put forward as promising therapeutics for end-stage liver disease (ESLD). In the present study, we compared the effects of defined chemicals and liver extract on the hepatic differentiation of ADSCs. ADSCs were isolated according to the method described in our previously published study. Subsequently, the differentiation of ADSCs was induced separately by chemicals (including hepatic growth factor (HGF), fibroblast growth factor (FGF), and oncostatin M (OSM)) and liver extract (30 μg/ml) in a total period of 21 d. The efficiency of hepatic differentiation was evaluated by changes in the cell morphology, gene expression, and cellular function. The results showed that the liver extract promoted the hepatic differentiation of ADSCs to a significantly greater extent than the chemicals. In the group of ADSCs treated with liver extract, changes in the cell morphology began sooner, and the expression of alpha-FP and albumin genes was higher than that in the chemically treated group. The ADSCs in both the groups stained positive for anti-alpha trypsin (AAT) and albumin markers. The cells also exhibited glycogen storage capacity. Therefore, we concluded that the liver extract could efficiently induce the differentiation of ADSCs into hepatocyte-like cells. This study reveals the potential of mesenchymal stem cell differentiation in the liver extract, which supports further preclinical and clinical research on the application of ADSCs in ESLD treatment.
October 26, 2015
An evaluation of the safety of adipose-derived stem cells
The adipose tissue contains a large numbers of stem cells; adipose-derived stem cells (ADSCs) can be em- ployed in regenerative medicine. This study was aimed at isolating ADSCs and evaluating the safety of ADSCs in mouse models. Stromal vascular fraction (SVF) was collected from the adipose tissue using collagenase. ADSCs were then isolated from SVFs by in vitro culture. The stemness of the ADSCs was evaluated in vitro based on their self-renewal potential, po- tential to differentiate into osteoblasts, and adipocytes, and the expression of specific markers. Finally, the tumor forma- tion ability of ADSCs was evaluated in vivo in athymic mice. Results showed that 100% of the ADSC samples developed well and maintained homogeneity up to passage 10. The ADSCs were completely sterilized and could not form tumors in athymic mice. These initial results showed that ADSCs were safe for use in stem cell therapy
October 04, 2015
Vitamin C stimulates human gingival stem cell proliferation and expression of pluripotent markers
Gingival stem cells (GSCs) are a novel source of mesenchymal stem cells (MSCs) that are easily accessed from the oral cavity. GSCs were considered valuable autograft MSCs with particular characteristics. However, the limitation in the number of available GSCs remains an obstacle. Therefore, this study aimed to stimulate GSC proliferation by ascorbic acid (AA) and determined the effects of AA on GSC pluripotent potential-related gene expression. GSCs were isolated from gum tissue by explant culture and continuously subcultured before analysis of stemness and effects of AA on pluripotent-related gene expression. GSCs cultured with various concentrations of AA showed increased proliferation in a dose-dependent manner. AA-treated GSCs showed significantly higher expression of SSEA-3, Sox-2, Oct-3/4, Nanog, and TRA-1-60 compared with control cells. More importantly, GSCs also maintained their stemness with MSC phenotypes and failed to cause tumors in nude athymic mice. Our results show that AA is a suitable factor to stimulate GSC proliferation.
October 31, 2015
Production of dendritic cells and cytokine-induced killer cells from banked umbilical cord blood samples
Umbilical cord blood (UCB) is considered to be a source of hematopoietic stem cells (HSCs). All UCB banks have recently become interested in the isolation and storage of HSCs for the treatment of hematological diseases. However, UCB was also recently confirmed as a source of immune cells for immunotherapy such as dendritic cells (DCs) and cytokine-induced killer cells (CIKs). This study aimed to exploit this source of immune cells in banked UCB samples. After collection of UCB samples, mononuclear cells (MNCs) containing stem cells, progenitor cells, and mature cells were isolated by Ficoll-Hypaque-based centrifugation. The MNCs were subjected to freezing and thawing according to a previously published protocol. The banked MNCs were used to produce DCs and CIKs. To produce DCs, MNCs were induced in RPMI 1640 medium supplemented with GM-CSF (50 ng/ml) and IL-4 (40 ng/ml) for 14 days. To produce CIKs, MNCs were induced in RPMI 1640 medium supplemented an anti-CD3 monoclonal antibody, IL-3, and GMC-SF for 21–28 days. Both DCs and CIKs were evaluated for their phenotypes and functions according to previously published protocols. The results showed that banked UCB samples can be successfully used to produce functional DCs and CIKs. These samples are valuable sources of immune cells for immunotherapy. The present results suggest that banked UCB samples are useful not only for stem cell isolation, but also for immune cell production.
November 16, 2015
Comparison of the Treatment Efficiency of Bone Marrow-Derived Mesenchymal Stem Cell Transplantation via Tail and Portal Veins in CCl4 -Induced Mouse Liver Fibrosis
Because of self-renewal, strong proliferation in vitro , abundant sources for isolation, and a high differentiation capacity, mesenchymal stem cells are suggested to be potentially therapeutic for liver fibrosis/cirrhosis. In this study, we evaluated the treatment effects of mouse bone marrow-derived mesenchymal stem cells (BM-MSCs) on mouse liver cirrhosis induced by carbon tetrachloride. Portal and tail vein transplantations were examined to evaluate the effects of different injection routes on the liver cirrhosis model at 21 days after transplantation. BM-MSCs transplantation reduced aspartate aminotransferase/alanine aminotransferase levels at 21 days after injection. Furthermore, BM-MSCs induced positive changes in serum bilirubin and albumin and downregulated expression of integrins (600- to 7000-fold), transforming growth factor, and procollagen- α 1 compared with the control group. Interestingly, both injection routes ameliorated inflammation and liver cirrhosis scores. All mice in treatment groups had reduced inflammation scores and no cirrhosis. In conclusion, transplantation of BM-MSCs via tail or portal veins ameliorates liver cirrhosis in mice. Notably, there were no differences in treatment effects between tail and portal vein administrations. In consideration of safety, we suggest transfusion of bone marrow-derived mesenchymal stem cells via a peripheral vein as a potential method for liver fibrosis treatment.
November 30, 2015
Isolation and proliferation of umbilical cord tissue derived mesenchymal stem cells for clinical applications
Umbilical cord (UC) is a rich source of rapidly proliferating mesenchymal stem cells (MSCs) that are easily cultured on a large-scale. Clinical applications of UC–MSCs include graft-versus-host disease, and diabetes mellitus types 1 and 2. UC–MSCs should be isolated and proliferated according to good manufacturing practice (GMP) with animal component-free medium, quality assurance, and quality control for their use in clinical applications. This study developed a GMP standard protocol for UC-MSC isolation and culture. UC blood and UC were collected from the same donors. Blood vasculature was removed from UC. UC blood was used as a source of activated platelet rich plasma (aPRP). Small fragments (1–2 mm2) of UC membrane and Wharton’s jelly were cut and cultured in DMEM/F12 medium containing 1 % antibiotic–antimycotic, aPRP (2.5, 5, 7.5 and 10 %) at 37 °C in 5 % CO2. The MSC properties of UC–MSCs at passage 5 such as osteoblast, chondroblast and adipocyte differentiation, and markers including CD13, CD14, CD29, CD34, CD44, CD45, CD73, CD90, CD105, and HLA-DR were confirmed. UC–MSCs also were analyzed for karyotype, expression of tumorigenesis related genes, cell cycle, doubling time as well as in vivo tumor formation in NOD/SCID mice. Control cells consisted of UC–MSCs cultured in DMEM/F12 plus 1 % antibiotic–antimycotic, and 10 % fetal bovine serum (FBS). All UC-MSC (n = 30) samples were successfully cultured in medium containing 7.5 and 10 % aPRP, 92 % of samples grew in 5.0 % aPRP, 86 % of samples in 2.5 % aPRP, and 72 % grew in 10 % FBS. UC–MSCs in these four groups exhibited similar marker profiles. Moreover, the proliferation rates in medium with PRP, especially 7.5 and 10 %, were significantly quicker compared with 2.5 and 5 % aPRP or 10 % FBS. These cells maintained a normal karyotype for 15 sub-cultures, and differentiated into osteoblasts, chondroblasts, and adipocytes. The analysis of pluripotent cell markers showed UC–MSCs maintained the expression of the oncogenes Nanog and Oct4 after long term culture but failed to transfer tumors in NOD/SCID mice. Replacing FBS with aPRP in the culture medium for UC tissues allowed the successful isolation of UC–MSCs that satisfy the minimum standards for clinical applications.
December 15, 2015
Low concentrations of 5-aza-2'-deoxycytidine induce breast cancer stem cell differentiation by triggering tumor suppressor gene expression
Background: Breast cancer stem cells (BCSCs) are considered the cause of tumor growth, multidrug resistance, metastasis, and recurrence. Therefore, differentiation therapy to reduce self-renewal of BCSCs is a promising approach. We have examined the effects of 5-aza-2′-deoxycytidine (DAC) on BCSC differentiation. Materials and methods: BCSCs were treated with a range of DAC concentrations from 0.625 to 100 μM. The differentiation status of DAC-treated BCSCs was graded by changes in cell proliferation, CD44+CD24- phenotype, expression of tumor suppressor genes, including BRCA1, BRCA2, p15, p16, p53, and PTEN, and antitumor drug resistance. Results: DAC treatment caused significant BCSC differentiation. BCSCs showed a 15%–23% reduction in proliferation capacity, 3.0%–21.3% decrease in the expression of BCSC marker CD44+/CD24-, activation of p53 expression, and increased p15, p16, BRCA1, and BRCA2 expression. Concentrations of DAC ranging from 0.625 to 40 μM efficiently induce cell cycle arrest in S-phase. ABCG2, highly expressed in BCSCs, also decreased with DAC exposure. Of particular note, drug-sensitivity of BCSCs to doxorubicin, verapamil, and tamoxifen also increased 1.5-, 2.0-, and 3.7-fold, respectively, after pretreatment with DAC. Conclusion: DAC reduced breast cancer cell survival and induced differentiation through reexpression of tumor suppressor genes. These results indicate the potential of DAC in targeting specific chemotherapy-resistant cells within a tumor.
November 30, 2015
Preliminary evaluation of treatment efficacy of umbilical cord blood-derived mesenchymal stem cell-differentiated cardiac progenitor cells in a myocardial injury mouse model
Recently, stem cell therapy has been investigated as a strategy to prevent or reverse damage to heart tissue. Although the results of cell transplantation in animal models and patients with myocardial ischemia are promising, the selection of the appropriate cell type remains an issue that requires consideration. In this study, we aimed to evaluate the effect of cardiac progenitor cell transplantation in a mouse model of myocardial ischemia. The cardiac progenitor cells used for transplantation were differentiated from umbilical cord blood mesenchymal stem cells. Animal models injected with phosphate-buffered saline (PBS) and healthy mice were used as controls. Cell grafting was assessed by changes in blood pressure and histological evaluation. After 14 days of transplantation, the results demonstrated that the blood pressure of transplanted mice was stable, similar to healthy mice, whereas it fluctuated in PBS-injected mice. Histological analysis showed that heart tissue had regenerated in transplanted mice, but remained damaged in PBS-injected mice. Furthermore, trichrome staining revealed that the transplanted mice did not generate significant amount of scar tissue compared with PBS-injected control mice. In addition, the cardiac progenitor cells managed to survive and integrate with local cells in cell-injected heart tissue 14 days after transplantation. Most importantly, the transplanted cells did not exhibit tumorigenesis. In conclusion, cardiac progenitor cell transplantation produced a positive effect in a mouse model of myocardial ischemia.
January 26, 2016
Hypoxia promotes adipose-derived stem cell proliferation via VEGF
Adipose-derived stem cells (ADSCs) are a promising mesenchymal stem cell source with therapeutic applications. Recent studies have shown that ADSCs could be expanded in vitro without phenotype changes. This study aimed to evaluate the effect of hypoxia on ADSC proliferation in vitro and to determine the role of vascular endothelial growth factor (VEGF) in ADSC proliferation. ADSCs were selectively cultured from the stromal vascular fraction obtained from adipose tissue in DMEM/F12 medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic. ADSCs were cultured under two conditions: hypoxia (5% O2) and normal oxygen (21% O2). The effects of the oxygen concentration on cell proliferation were examined by cell cycle and doubling time. The expression of VEGF was evaluated by the ELISA assay. The role of VEGF in ADSC proliferation was studied by neutralizing VEGF with anti-VEGF monoclonal antibodies. We found that the ADSC proliferation rate was significantly higher under hypoxia compared with normoxia. In hypoxia, ADSCs also triggered VEGF expression. However, neutralizing VEGF with anti-VEGF monoclonal antibodies significantly reduced the proliferation rate. These results suggest that hypoxia stimulated ADSC proliferation in association with VEGF production.
Hypoxia promotes adipose-derived stem cell proliferation via VEGF.
January 30, 2016
Culture and differentiation of cytokine-induced killer cells from umbilical cord blood-derived mononuclear cells
Cytokine-induced killer cells (CIK) are cytotoxic T cells, which have both NK and T cell properties. These cells are characterized by potent, non-MHC-restricted cytotoxicity and reduced alloreactivity, which make them appealing for use in adoptive immunotherapy of cancer and virus infections. In this study, CIK cells were generated by stimulating umbilical cord blood-derived mononuclear cells (UCB-MNCs) with interferon-gamma (IFN-g) on day 0. Anti-CD3 antibody and interleukin-2 (IL-2) were added after 24 hours at four different experimental concentration combinations in order to identify the optimal cytokine amounts for CIK cell proliferation. Cells were collected at four time points over a 21-day period (day 0, 7, 14, 21) for analysis of cell marker presentation using flow cytometry, as well as transcription-level cytokine production using RT-PCR. The results showed that in the 21-day culture, the average final expansion levels of CD3+CD56+ CIK cell were in the range of hundredfold, accounted for 26% in the bulk culture. Most important, these cells strongly expressed granzyme B (80.87%), a potent factor involved in cell-mediated cytotoxicity. These CIK cells also transcriptionally overexpressed the three cytokine genes that produce IFN-g, tumor necrosis factor-alpha (TNF-a), and IL-2; these are key for immune cell mobilization against tumors as well as foreign pathogens. Our research establishes an effective cytokine concentration and time protocol for use in generation of CIK cells from UCB-MNCs, potentiating greater applications of CIK cell-adoptive immunotherapy in both research and clinical settings. Thus, the 3rd and 4th experimental conditions both stimulated CIK cell differentiation with 50 ng/ml of anti-CD3 antibody, but with IL-2 concentrations of 500 U/ml and 1000 U/ml, respectively.
Culture and differentiation of cytokine-induced killer cells from umbilical cord blood-derived mononuclear cells.
February 28, 2016
A mouse model of osteonecrotic femoral head induced by methylprednisolone and liposaccharide
Introduction: Osteonecrosis of the femoral head is caused by various factors, including prolonged use of steroid drugs, use of alcohol, vascular injuries and hemoglobinopathies. This study aims to develop a mouse model for glucocorticoid-induced avascular necrosis (AVN) of the femoral head.Methods: Adult mice were randomly divided into two groups: experimental and control. Group A (the experimental group) was given (via intramuscular injection) 10 mg/kg of lipopolysaccharide (LPS) and 30 mg/kg of methylprednisolone (MPS). Each mouse additionally received MPS in divided oral doses of 13 mg/kg for 10 consecutive days. Group B (the control group) received normal saline at the same location and same volume as those in Group A. Histological changes of the femoral heads were observed by electron microscopy at 3, 5, and 7 weeks after the last chemical injection. The percentage of empty lacu-nae was measured randomly and the expression of fibrocartilage was evaluated using an image analyzing system. The expression of CD31 and VEGF-R2 were observed by immunohistochemistry. The bone marrow-derived mononuclear cells were stained with propidium iodide and cell cycle was analyzed by flow cytometry. Results:The results showed that at weeks 3 and 5, mice in Group A showed an increase in body weight. From weeks 5 to 7, mouse body weight in both groups remained constant. No difference in bone morphology was observed at week 7. The percentage of empty lacunae was 5.87 2.49% at week 5 and 21.58 8.10% at week 7. After 7 weeks, chondrocyte degeneration and fibrocartilage expression were observed. Moreover, the density of CD31 and VEGF-R2 markers increased in the fe-moral head. The rate of apoptosis in the bone marrow increased at week 3 then decreased. Conclusion: The data show that MPS, combined with LPS, can induce in mice features typical of early AVN of the femoral head.
A mouse model of osteonecrotic femoral head induced by methylprednisolone and liposaccharide.
February 28, 2016
Clinical application of stem cells: An update 2015
Stem cell transplantation has the long history of more than 50 years from the first bone marrow transplantation in 1957. From the 2000s, clinical applications of stem cells significantly increased with more diseases and more patients treated with stem cells. Both autologous stem cells and allogenic stem cells as well as adult stem cells and induced pluripotent stem cells (iPSCs), and both in vitro non-expanded stem cells and in vitro expanded stem cells were clinically applied. For adult stem cells, besides hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs), neural stem cells, endothelial progenitor cells, limbal stem cells… also were used in the treatment of some diseases. To the year 2015, applications of MSCs have dramatically increased when some MSCs based drugs that were approved and commercialized in some countries. About iPSCs, Japanese scientists also firstly applied the iPSCs in treatment of ophthalmological diseases. Currently, the European Medicines Agency approved the first expanded stem cell therapy to repair damaged cornea in the Europe. This review aimed to summarize, update clinical applications of stem cells to 2015.
March 29, 2016
Cytokine-induced killer cell transplantation: an innovative adoptive therapy
Cytokine-induced killer (CIK) cells areeffector immune cells with anti-tumor potency of T lymphocytes as well as non-major histocompatibility complex restricted elimination of natural killer cells. Preclinical models have shown that CIK cells have strong anti-tumor killing capacity against a variety of blood cancers and solid tumors. Clinical studies confirm the advantages of CIK cells, including the safety of CIK cell therapy in patients with advanced cancer. A preeminent property of CIK cells, which may help them to overcome some of the limitations of other adoptive immunotherapy strategies, is their ability to be expanded ex vivo to high numbers. Their robust in vitro proliferation provides adequate quantity for multiple adoptive infusions. The tumor-killing capacity of CIK cells is mainly based on the interaction between NKG2D molecules on CIK cells and MIC A/B or ULBP molecules on tumor cells. Moreover, CIK cells have a reduced allo-reactivity across HLA-barriers. This review summarizes the clinical applications of CIK cells and updates of combining CIK cells with other therapies. This review highlights the benefits of CIK cell use in clinical treatment of cancer.
March 28, 2016
In vitro and in vivo biocompatibility of Ti-6Al-4V titanium alloy and UHMWPE polymer for total hip replacement
Introductions: Joint replacements have considerably improved the quality of life of patients with damaged joints. Over the past 30 years, there has been much effort and investigations in ways to repair damages in joints, including knee and hip joints. Materials for joint production have also been developed. Many improvements have been made in the joint replacement materials to increase their biocompatibility and longevity. This study is aimed at evaluating the in vitro and in vivo biocompatibility of Ti-6Al-4V titanium alloy and UHMWPE polymer used in total hip replacements. Methods: Ti-6Al-4V titanium alloy and UHMWPE polymer were carefully washed with sterile distilled water then autoclaved. The materials were used directly or indirectly to evaluate pyrogens, endotoxins, animal cell cytotoxicity, gene mutation, animal cell transformation, DNA synthesis, immunogenicity, histology reactions, and immune response. All assays were performed according to ISO10993 guidelines. Results: The results showed that Ti-6Al-4V titanium alloy and Chirulen 1020 UHMWPE polymer satisfied all criteria for implantable materials
In vitro and in vivo biocompatibility of Ti-6Al-4V titanium alloy and UHMWPE polymer for total hip replacement.
March 28, 2016
What are markers for breast cancer stem cells ?
Breast cancer stem cells were firstly discovered by Al-Hajj et al. (2003). Many scientists interested in targeting them as an important solution to "remove" the root of breast cancer. However, more and more publications showed that breast cancer stem cells are the heterogenous population that expression of some markers can be different between them. Particularly, some different markers were considered as markers of breast cancer stem cells. Therefore, what are gold standards of these cells? In this publication, we discussed some conflicts about markers of breast cancer stem cells and suggested some gold standards for breast cancer stem cells.
What are markers for breast cancer stem cells ?.
March 28, 2016
Mesenchymal Stem Cells: vector for targeted cancer therapy
Mesenchymal stem cells (MSCs) have been studied extensively due to their potential to differentiate to cell types of varying lineages.Adipose tissue and umbilical cord blood are two tissues frequently used to obtain MSCs. Due to tumor tropism of MSCs and their ability to protect encoded cytotoxic genes, MSCs have garnered interest as a potential vector for targeted therapy, with limited damage to normal tissues. The tumor microenvironment plays a critical role in ensuring the survival of cancer cells through promotion of MSCs to differentiate into cancer-associated fibroblasts (CAFs), which promote tumor growth and metastasis. Through specific interactions between ligands and receptors expressed on MSCs and cancer cells, respectively,MSCs can home to necrotic tissues or inflamed sites in the body, including the tumor microenvironment. In fact, an inflammatory tumor environment is similar to a wound healing environment. This review discusses the preeminent characteristics of MSCs and their influence ontumor cell growth and metastasis. MSCs may represent an encouraging platform for cancer treatment. The combination of MSC and gene therapy represents a potentially outstanding strategy to specifically target and effectively destroy tumor.
Mesenchymal Stem Cells: vector for targeted cancer therapy.
April 25, 2016
Current status of stem cell transplantation in Vietnam
Stem cell therapy is promising for treatment of degenerative diseases. In Vietnam, stem cell applications have been performed since the 1990s. In addition to hematopoietic stem cell transplantation for malignant hematologic diseases and disorders, mesenchymal stem cells have also been clinically approved for treatment of diseases such as knee osteoarthritis, chronic obstructive pulmonary disease, autism, cerebral palsy and more in recent years. Unlike countries that only permit use of non-expanded stem cells, the Vietnamese government has permitted use of both non-expanded and expanded stem cells for both local and systemic transfusion in some diseases. After 20 years of stem cell development, the market has finally established stem cell banks and some stem cell clinical services. Although some regulations or guidelines regarding stem cell applications have yet to be published by the government, present breakthroughs in stem cell transplantation may facilitate Vietnam’s recognition as a key player in stem cell application in Asia and, in the near future, the world.
Current status of stem cell transplantation in Vietnam.
April 25, 2016
Clinical trials for stem cell transplantation: when are they needed?
In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.
Clinical trials for stem cell transplantation: when are they needed?.
May 30, 2016
Isolation of endothelial progenitor cells from human adipose tissue
Adipose tissue is a rich source of stem cells, especially mesenchymal stem cells (MSCs). This study aimed to identify and isolate endothelial progenitor cells (EPCs) from human adipose tissue. Belly adipose tissues were collected from donors with consent. Stromal vascular fractions (SVFs) were extracted from adipose tissues by enzyme collagenase using commercial kits. SVFs were cultured in MSCCult medium for 24 h to obtain MSCs, then supernatant was collected and cell pellet cultured in EGM-2 medium to obtain adipose tissue EPCs (ADEPCs). ADEPCs were checked for surface marker expression of CD31 and VEGFR2, and for angiogenesis capability in vitro. The results showed that SVFs contained a pool of EPCs with strong angiogenesis potential and that adipose tissue is not only a source for MSCs but also for EPCs. Therefore, ADEPCs may a useful source of EPCs for vascular medicine.
Isolation of endothelial progenitor cells from human adipose tissue.
May 29, 2016
Concise Review: 3D cell culture systems for anticancer drug screening
Three-dimensional (3D) cultures are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than monolayer cultures. In cancer research, the natural tumor characteristics and architecture are more closely mimicked by 3D cell models. Thus, 3D cell cultures are more promising and suitable models, particularly for in vitro drug screening to predict in vivo efficacy. Different methods have been developed to create 3D cell culture systems for research application. This review will introduce and discuss 3D cell culture methods most popularly used in drug screening. The potential applications of these systems in anticancer drug screening will also be discussed.
Concise Review: 3D cell culture systems for anticancer drug screening.
June 27, 2016
A Controlled Clinical Trial of Adipose Derived Stem Cell Transplantation for Osteoarthritis
Adipose-derived stem cell (ADSC) transplantation is a promising therapy for some chronic diseases. Some previous clinical trials showed that some diseases could improve and recover by ADSC transplantation. This study aimed to investigate ADSC transplantation effects on osteoarthritis compared to control. This clinical trial was performed at 03 hospitals with controlled groups. There were total 60 patients enrolling this study. All patients were divided into 3 groups: Group 1 (15 patients, traditional treatment therapy by endoscopic surgery – as control), Group 2 (15 patients; endoscopic surgery + ADSC injection), Group 3 (ADSC injection). In the Group 2, endoscopic surgeried patients were injected with a autologous mixture of stem cell-enriched fractions (stromal vascular fraction - SVF) and activated platelet rich plasma (aPRP) that prepared from fat tissue, and peripheral blood respectively, while in group 3, patients only were injected with SVF and aPRP without endoscopic surgery. The results showed that all patients in treated groups significantly reduced pain, reduced the Womac score, clearly increased the Lyshom scores and VAS scores compared to the control group after 18 months. These findings suggested injection of SVFs and aPRP mixture efficiently improved the osteoarthritis after six months.
June 27, 2016
Minimal Criteria of Expanded Mesenchymal Stem Cells for Clinical Application: Hypothesis and Experiments
Mesenchymal stem cells (MSCs) were widely used in clinical applications. To date, nearly 1000 clinical trials were registered in clinicaltrial.gov. In some initial studies, all non-expanded MSCs were clinically used to treat some diseases, while recent years expanded MSCs were used. Although expanded MSCs hold several useful properties such as high purity, more homogenous cell population, and plentiful source; they also faced to some risks, especially some changes during in vitro culture. This study aimed to evaluate some changes during in vitro culture that can be recorded as minimal criteria.
June 27, 2016
Adding the Pluripotential to Mesenchymal Stem Cells by Defined Chemicals
Pluripotential holds an important role in differentiation potential of stem cells. Stem cells with pluripotential can differentiate into specific cells from three germ layers. Embryonic stem cells and induced pluripotent stem cells are pluripotent stem cells with highest potential for differentiation. However, these cells play some limitations such as ethical issues and tumorigenecity. This study aimed to produce pluripotent stem cells from multipotent mesenchymal stem cells by 4 factors included insulin like growth factor I (IGF I), epidermal growth factor (EGF), hydrocortisone and ascorbic acid.
June 27, 2016
In vitro expansion of mesenchymal stem cells for clinical use
Mesenchymal stem cells (MSCs) now are popular stem cells for clinical applications. To date, MSCs were accepted in various disease treatments with several FDA-approved treatments in some countries. One important requirement for the clinical usage of stem cells is the production of stem cells. Actually, the treatment efficacy of MSC transplantation depends on the quality of transplanted MSCs. This review aimed to present some guidelines for MSC production according to good manufacturing practice that helps to maintain the quality of stem cells from batch to batch as well as the clinical satisfaction.
In vitro expansion of mesenchymal stem cells for clinical use.
June 25, 2016
Synergistic effect of chimeric antigen receptors and cytokine- induced killer cells: An innovative combination for cancer therapy
In recent years, the combination of gene and immunotherapy for cancer treatment has been regarded as innovative and promising; together, both therapies can help overcome limitations associated with conventional treatments. In order to augment anti-cancer efficacy and to maintain the specificity of antibody therapy, chimeric an-tigen receptor (CAR)-modified T cells, directed toward tumor-specific antigens, have emerged as a novel and promising therapeutic platform. CARs consist of a B cell receptor (BCR)-derived extracellular domain and T cell receptor (TCR)-associated signaling elements. Cytokine-induced killer (CIK) cells are the effector immune cells that can be activated ex vivo and possess both the anti-tumor potency of T lymphocytes and the non-major histocompatibility complex-restricted elimination of natural killer cells. With their pre-eminent ability for robust proliferation, CIK cells may overcome the main limitations of adoptive immunotherapy strategies. CIK cells have strong tumor cell killing capacity; they are effective against a wide variety of malignant tumors and have been shown to be safe in cancer patients. This review summarizes the characteristics of CARs which make them attractive for in cancer treatment strategies. In addition, the role of CIK cells and the advantages of combining CIK cells with CAR-based therapy will be discussed. Scientific evidence to support their combined therapeutic application will be highlighted, with a focus on how their innovative combination may be translated into cancer clinical trials.
Synergistic effect of chimeric antigen receptors and cytokine- induced killer cells: An innovative combination for cancer therapy.
June 26, 2016
A preliminary comparison of dendritic cell maturation by total cellular RNA to total cellular lysate derived from breast cancer stem cells
Introduction: Dendritic cells (DCs) have been widely considered as the most potent antigen-presenting cells. As such, DC-based vaccines are regarded as a promising strategy in cancer vaccination and therapy. This study compared the maturation of DCs induced by total cellular RNA and cell lysate (i.e. nucleic acid and protein). Methods: Both total RNA and cell lysate were isolated from breast cancer stem cells (BCSCs). The lysates were used to incubate with monocyte-derived immature DCs. To track the transfection efficiency, the BCSCs were stably transfected with green fluorescent protein (GFP). The maturation of DCs was evaluated by expression of costimulatory molecules including CD40, CD80, and CD86. Transfections were confirmed by evaluating GFP expression in DCs at 24 hours post transfection. Results: The results of this study showed that GFP is expressed in DCs after both total RNA and lysate incubation. The expression of costimulatory molecules (CD40, CD80, and CD86) was significantly higher in RNA-transfected DCs than in cell lysate-primed DCs. Conclusion: Our findings suggest that total RNA primed BCSCs can be a suitable platform for DC-based vaccine therapy of breast cancer.
A preliminary comparison of dendritic cell maturation by total cellular RNA to total cellular lysate derived from breast cancer stem cells.
June 25, 2016
Umbilical cord-derived stem cells (MODULATIST TM ) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells
Introduction: Mesenchymal stem cells (MSCs) show great promise in regenerative medicine. Clinical applications of MSCs have recently increased significantly, especially for immune diseases. Autologous transplantation is considered a safe therapy. However, its main disadvantages are poor stability and quality of MSCs from patient to patient, and labor-intensive and time-consuming culture procedures. Therefore, allogeneic MSC transplantation has recently emerged as a potential replacement for autologous transplantation. " Off the shelf " MSC products, or so-called " stem cell drugs " , have rapidly developed; these products have already been approved in various countries, including Canada, Korea and Japan. This study aims to evaluate a new stem cell product or " drug " , termed Modulatist TM , derived from umbilical cord mesenchymal stem cells (UCMSCs), which have strong immunomodulatory properties, compared to bone marrow-derived MSCs (BMMSCs) or adipose tissue-derived stem cells (ADSCs). Methods: Modulatist TM was produced from MSCs derived from whole umbilical cord (UC) tissue (which includes Wharton's jelly and UC), according to GMP compliant procedures. Bone marrow-and adipose tissue-derived MSCs were isolated and proliferated in standard conditions, according to GMP compliant procedures. Immunomodulation mediated by MSCs was assessed by allogenic T cell suppression and cytokine release; role of prostaglandin E2 in the immunomodulation was also evaluated. Results: The results showed that Modulatist TM exhibited stronger immunomodulation than BMMSC and ADSC in vitro. Modulatist TM strongly suppressed allogeneic T cells proliferation and decreased cytokine production, compared to BMMSCs and ADSCs. Conclusion: Modulatist TM is a strong immunomodulator and promising MSC product. It may be useful to modulate or treat autoimmune diseases.
Umbilical cord-derived stem cells (MODULATIST TM ) show strong immunomodulation capacity compared to adipose tissue-derived or bone marrow-derived mesenchymal stem cells.
July 30, 2016
Ligand binding to anti-cancer target CD44 investigated by molecular simulations
CD44 is a cell-surface glycoprotein and receptor for hyaluronan, one of the major components of the tumor extracellular matrix. There is evidence that the interaction between CD44 and hyaluronan promotes breast cancer metastasis. Recently, the molecule F-19848A was shown to inhibit hyaluronan binding to receptor CD44 in a cell-based assay. In this study, we investigated the mechanism and energetics of F-19848A binding to CD44 using molecular simulation. Using the molecular mechanics/Poisson Boltzmann surface area (MM-PBSA) method, we obtained the binding free energy and inhibition constant of the complex. The van der Waals (vdW) interaction and the extended portion of F-19848A play key roles in the binding affinity. We screened natural products from a traditional Chinese medicine database to search for CD44 inhibitors. From combining pharmaceutical requirements with docking and molecular dynamics simulations, we found ten compounds that are potentially better or equal to the F-19848A ligand at binding to CD44 receptor. Therefore, we have identified new candidates of CD44 inhibitors, based on molecular simulation, which may be effective small molecules for the therapy of breast cancer.
Ligand binding to anti-cancer target CD44 investigated by molecular simulations.
July 30, 2016
Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: Preliminary results
Background: Breast cancer (BC) is one of the leading cancers in women. Recent progress has enabled BC to be cured with high efficiency. However, late detection or metastatic disease often renders the disease untreatable. Additionally, relapse is the main cause of death in BC patients. Breast cancer stem cells (BCSCs) are considered to cause the development of BC and are thought to be responsible for metastasis and relapse. This study aimed to target BCSCs using dendritic cells (DCs) to treat tumor-bearing humanized mice models. Materials and methods: NOD/SCID mice were used to produce the humanized mice by transplantation of human hematopoietic stem cells. Human BCSCs were injected into the mammary fat pad to produce BC humanized mice. Both hematopoietic stem cells and DCs were isolated from the human umbilical cord blood, and immature DCs were produced from cultured mononuclear cells. DCs were matured by BCSC-derived antigen incubation for 48 hours. Mature DCs were vaccinated to BC humanized mice with a dose of 10(6) cells/mice, and the survival percentage was monitored in both treated and untreated groups. Results: The results showed that DC vaccination could target BCSCs and reduce the tumor size and prolong survival. Conclusion: These results suggested that targeting BCSCs with DCs is a promising therapy for BC.
Targeting breast cancer stem cells by dendritic cell vaccination in humanized mice with breast tumor: Preliminary results.
July 30, 2016
Taraxacum officinale dandelion extracts efficiently inhibited the breast cancer stem cell proliferation
Introduction: Breast cancer stem cells (BCSCs) play an important role in breast cancer initiation, metastasis, recurrence, and drug resistance. Therefore, targeting BCSCs is an essential strategy to suppress cancer growth. This study aimed to evaluate the effects of dandelion Taraxacum officinale extracts on BCSC proliferation in vitro in 2D and 3D cell culture platforms. Methods: The BCSCs were maintained understandard conditions, verified for expression of CD44 and CD24 surface markers, and transfected with GFP before use in experiments. In the 2D model, the BCSCs were cultured as adherent cells in standard culture plates; in the 3D model, the BCSCs were cultured on low-adherent plates to form spheroids. The effect of Dandelion extracts on proliferation of BCSC was assessed by evaluating induction of cell death, expression of genes of death receptor signaling pathways, and production of reactive oxygen species (ROS) by BCSCs. Results: BCSCs formed spheroids as microtumors in vitro and exhibited some in vivo characteristics of tumors, such as increased expression of N-cadherin and Slug, decreased expression of E-cadherin, capacity to invade into the extracellular matrix (ECM), and presence of a hypoxic environment at the core of tumor spheroids. The dandelion extracts significantly inhibited BCSC proliferation in both two-dimensional (2D) and three-dimensional (3D) models of BCSCs. However, the IC50 value of dandelion extracts in BCSCs in the 3D model was much higher than that in the 2D model. The results also demonstrated that BCSCs treated with Dandelion extracts showed increased expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TRAIL receptor 2 (TRAILR2; i.e. death receptor 5;DR5). Moreover, treatment induced expression of DR4. Treatment with methanol dandelion extract enhanced production of ROS in BCSCs. Conclusion: Dandelion extracts are promising extracts for the treatment of breast tumors. The effect of methanol dandelion extract was better than that for ethanol extract. Importantly, BCSCs in 3D exhibited stronger drug resistance than those in 2D. In summary, our results indicate the strong potential of dandelion extracts as anti-cancer agents and rational use for drug development.
Taraxacum officinale dandelion extracts efficiently inhibited the breast cancer stem cell proliferation.
August 29, 2016
Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia
Background Endothelial progenitor cell (EPC) transplantation is a promising therapy for ischemic diseases such as ischemic myocardial infarction and hindlimb ischemia. However, limitation of EPC sources remains a major obstacle. Direct reprogramming has become a powerful tool to produce EPCs from fibroblasts. Some recent efforts successfully directly reprogrammed human fibroblasts into functional EPCs; however, the procedure efficacy was low. This study therefore aimed to improve the efficacy of direct reprogramming of human fibroblasts to functional EPCs. Methods Human fibroblasts isolated from foreskin were directly reprogrammed into EPCs by viral ETV2 transduction. Reprogramming efficacy was improved by culturing transduced fibroblasts in hypoxia conditions (5 % oxygen). Phenotype analyses confirmed that single-factor ETV2 transduction successfully reprogrammed dermal fibroblasts into functional EPCs. Results Hypoxia treatment during the reprogramming procedure increased the efficacy of reprogramming from 1.21 ± 0.61 % in normoxia conditions to 7.52 ± 2.31 % in hypoxia conditions. Induced EPCs in hypoxia conditions exhibited functional EPC phenotypes similar to those in normoxia conditions, such as expression of CD31 and VEGFR2, and expressed endothelial gene profiles similar to human umbilical vascular endothelial cells. These cells also formed capillary-like networks in vitro. Conclusion Our study demonstrates a new simple method to increase the reprogramming efficacy of human fibroblasts to EPCs using ETV2 and hypoxia.
Significant improvement of direct reprogramming efficacy of fibroblasts into progenitor endothelial cells by ETV2 and hypoxia.
August 29, 2016
Comparative Clinical Observation of Arthroscopic Microfracture in the Presence and Absence of a Stromal Vascular Fraction Injection for Osteoarthritis
Significance: Arthroscopic microfracture (AM) and stem cell therapy have been used clinically to treat osteoarthritis (OA). This study evaluated the clinical effects of AM in the presence (treatment group) and absence (placebo group) of a stromal vascular fraction (SVF) injection in the knee for OA. The SVF was suspended in platelet-rich plasma (PRP) before injection. Treatment efficacy differed significantly between placebo and treatment groups. All treatment group patients had significantly improved pain and arthritis index scores compared with the placebo group. These findings suggest that the SVF/PRP injection efficiently improved OA after 18 months. This study will be continuously monitored for 24 months.
August 29, 2016
Liquid biopsies: tumour diagnosis and treatment monitoring
Cancer is a disease with high evolutionary, i.e., malignant, characteristics that change under selective pressure from therapy. Characterization based on molecular or primary tumor properties or clinicopathological staging does not fully reflect the state of cancer, especially when cancer cells metastasize. This is the major reason for failure of cancer treatment. Currently, there is an urgent need for new approaches that allow more effective, but less invasive, monitoring of cancer status, thereby improving the efficacy of treatments. With recent technological advances, " liquid biopsies, " the isolation of intact cells or analysis of components that are secreted from cells, such as nucleic acids or exosomes, could be implemented easily. This approach would facilitate real-time monitoring and accurate measurement of critical biomarkers. In this review, we summarize the recent progress in the identification of circulating tumor cells using new high-resolution approaches and discuss new circulating tumor nucleic acid-and exosome-based approaches. The information obtained through liquid biopsies could be used to gain a better understanding of cancer cell invasiveness and metastatic competence, which would then benefit translational applications such as personalized medicine.
Liquid biopsies: tumour diagnosis and treatment monitoring.
August 29, 2016
Human adipose-derived mesenchymal stem cell could participate in angiogenesis in a mouse model of acute hindlimb ischemia
Introduction: Mesenchymal stem cells (MSCs) transplantation for the treatment of acute hindlimb ischemia is recently attracting the attention of many scientists. Identifying the role of donor cells in the host is a crucial factor for improving the efficiency of treatment. This study evaluated the injury repair role of xenogeneic adipose-derived stem cell (ADSC) transplantation in acute hindlimb ischemia mouse model. Methods: Human ADSCs were transplanted into the limb of ischemic mouse. The survival rate of grafted cells and expression of human VEGF-R2 and CD31 positive cells were assessed in the mouse. In addition, the morphological and functional recovery of ischemic hindlimb was also assessed. Results: The results showed that one-day post cell transplantation, the survival percentage of grafted cells was 3.62% ± 2.06% at the injection site and 15.71% ± 12.29% around the injection site. The rate of VEGFR2-positive cells had highest expression at 4 days post transplantation, 5.46% ± 2.13% at the injection site; 9.12% ± 7.17% at the opposite of injection site, and 7.22% ± 4.59% at the lateral gastrocnemius. The percentage of CD31 positive cells increased on day 4 at the injection site to 0.8% ± 1.60%, and further increased on day 8 at the lateral gastrocnemius site and the opposite injection site to 1.56% ± 0.44% and 1.17% ± 1.69%, respectively. After 14 days, the cell presentation and the angiogenesis marker expression were decreased to zero, except for CD31 expression at the opposite of injection site (0.72% ± 1.03%). Histological structure of the cell-injected muscle tissue remained stable as that of the normal muscle. New small blood vessels were found growing in hindlimb. On the other hand, approximately 66.67% of mice were fully recovered from ischemic hindlimb at grade 0 and I after cell injection. Conclusion: Thus, xenotransplantation of human ADSCs might play a significant role in the formation of new blood vessel and can assist in the treatment of mouse with acute hindlimb ischemia.
August 28, 2016
Direct reprogramming of fibroblasts into endothelial progenitor cells by defined factors
Introduction: Endothelial progenitor cells (EPCs) are important progenitor cells in vasculogenesis as well as in tissue engineering. However, few EPCs can be isolated from bone marrow, peripheral blood and umbilical cord blood. Moreover, their in vitro proliferation potential is also limited. Therefore, this study aimed to produce EPCs from direct reprogramming of fibroblasts by transduction with certain specific factors. Methods: Human fibroblasts were collected from human skin by published protocols. The cells were transduced with 2 viral vectors containing 5 factors, including Oct3/4, Sox2, Klf4, c-Myc (plasmid 1), and VEGFR2 (plasmid 2). Transduced cells were treated with endothelial cell medium for 21 days. The cells were analyzed for expression of Oct3/4, Sox3, Klf4, c-Myc and VEGFR2 at day 5, and for EPC phenotype at day 21. Results: The results showed that after 5 days of transduction, fibroblasts acquired partial pluripotency. After 21 days of transduction and culture in endothelial cell medium, the cells exhibited endothelial markers (e.g. CD31 and VEGFR2) and formed blood vessel-like capillaries. Conclusion: Our findings suggest another strategy for direct reprogramming of fibroblasts into EPCs.
Direct reprogramming of fibroblasts into endothelial progenitor cells by defined factors.
September 25, 2016
Overexpress of CD47 does not alter the stemness of MCF-7 breast cancer cells
Background: CD47 is a transmembrane glycoprotein expressed on all cells in the body and particularly overexpressed on cancer cells and cancer stem cells of both hematologic and solid malignancies. In the immune system, CD47 acts as a " don't eat me " signal, inhibiting phagocytosis by macrophages by interaction with signal regulatory protein α (SIRPα). In cancer, CD47 promotes tumor invasion and metastasis. This study aimed to evaluate the stemness of breast cancer cells when CD47 is overexpressed. Methods: MCF-7 breast cancer cells were transfected with plasmid pcDNA3.4-CD47 containing the CD47 gene. The stemness of the transduced MCF7 cell population was evaluated by expression of CD44 and CD24 markers, anti-tumor drug resistance and mammosphere formation. Results: Transfection of plasmid pcDNA3.4-CD47 significantly increased the expression of CD47 in MCF-7 cells. The overexpression of CD47 in transfected MCF-7 cells led to a significant increase in the CD44 + CD24-population, but did not increase doxorubicin resistance of the cells or their capacity to form mammospheres. Conclusion: CD47 overexpression enhances the CD44 + CD24-phenotype of breast cancer cells as observed by an increase in the CD44 + CD24-expressing population. However, these changes are insufficient to increase the stemness of breast cancer cells.
Overexpress of CD47 does not alter the stemness of MCF-7 breast cancer cells.
September 25, 2016
Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction
Introduction: Human fibroblasts can be differentiated into endothelial progenitor cells by direct reprogramming via ETV-2 transfection. Previously, we have shown that the efficacy of direct reprogramming can be enhanced by hypoxia treatment. In this study, we aim to investigate whether the efficacy of direct reprogramming of fibroblasts into EPCs via Ets variant gene 2 (ETV2) transfection can be increased with hepatocyte growth factor (HGF) treatment. Methods: Foreskin-derived fibroblasts were cultured in standard medium (DMEM/F12 supplemented with fetal bovine serum). They were then transduced with a viral vector expressing ETV2 in culture medium supplemented with HGF. The transduced fibroblasts were cultured in endothelial cell medium supplemented with HGF for 28 days. The efficacy of direct reprogramming was evaluated based on expression of CD31 and VEGFR2 markers by transduced cells. Phenotypic and functional characterization of induced EPCs were also confirmed by expression of particular genes and in vitro angiogenesis assays. Results: Our results showed that HGF significantly increased the efficacy of direct reprogramming of fibroblasts towards EPCs via ETV2 transcription factors; efficiency increased from 5.41±1.51% for ETV2 transduction alone to 12.31±2.15% for ETV2 transduction combined with HGF treatment. Conclusion: These findings suggest the rationale for combined use of ETV2 and HGF in direct in vitro reprogramming of fibroblasts into EPCs.
Hepatocyte growth factor improves direct reprogramming of fibroblasts towards endothelial progenitor cells via ETV2 transduction.
September 25, 2016
Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice
Introduction: Bone marrow derived MSCs (BM-MSCs) and adipose derived MSCs (AD-MSCs) are among the types of stem cells most commonly studied. Our study aims to compare the therapeutic efficacy of allograft AD-MSCs versus BM-MSCs in a mouse model of hindlimb ischemia. Methods: AD-MSCs were isolated from belly fat and BM-MSCs were isolated from femur bone marrow. They were used to treat mice with acute hindlimb ischemia. Treatment efficacy was compared among 4 groups: injected with BM-MSCs, injected with AD-MSCs, non-treated and injected with phosphate buffered saline. Mice in the groups were evaluated for the following: necrosis grade of leg, leg edema, blood flow, muscle cell restructure and new blood vessel formation. Results: Results showed that AD-MSC transplantation significantly recovered acute limb ischemia, with 76.5% of mice fully recovered, while the ratio was only 48.5% in BM-MSC transplanted group, and 0% in the non-treated and PBS groups. Evaluation of leg edema, blood flow, muscle cell restructure and new blood vessel formation also supported the observation that AD-MSC transplantation was superior over BM-MSC transplantation. Conclusion: Therefore, AD-MSCs may serve as the more suitable MSC for hindlimb ischemia treatment and angiogenesis therapy.
Adipose derived stem cell transplantation is better than bone marrow mesenchymal stem cell transplantation in treating hindlimb ischemia in mice.
October 29, 2016
Production of endothelial progenitor cells from skin fibroblasts by direct reprogramming for clinical usages
Endothelial progenitor cells (EPCs) play an impor- tant role in angiogenesis. However, they exist in limited num- bers in the human body. This study was aimed to produce EPCs, for autologous transplantation, using direct reprogramming of skin fibroblasts under GMP-compliant conditions. Fibroblasts were collected and cultured from the skin in DMEM/F12 medium supplemented with 5% activated platelet-rich plasma and 1% antibiotic-antimycotic solution. They were then transfected with mRNA ETV2 and incubated in culture medium under hypoxia (5% oxygen) for 14 d. Phenotype analysis of transfected cells confirmed that single-factor ETV2 transfection successfully reprogrammed dermal fibroblasts into functional EPCs. Our results showed that ETV2 mRNA combined with hypoxia can give rise to functional EPCs. The cells exhibited functional phenotypes similar to endothelial cells derived from umbilical cord vein; they expressed CD31 and VEGFR2, and formed capillary-like structures in vitro. Moreover, these EPCs could significantly improve hindlimb ischemia in mouse models. Although the direct conversion efficacy was low (3.12 ± 0.98%), altogether our study demonstrates that functional EPCs can be produced from fibroblasts and can be used in clinical applications.
October 29, 2016
Umbilical cord derived stem cell (Modulatist TM ) transplantation for severe chronic obstructive pulmonary disease: a report of two cases
Introduction: Chronic obstructive pulmonary disease (COPD) is a chronic disease affecting the airway of the respiratory system. COPD cases have rapidly increased in recent years, with the disease becoming the fourth leading cause of death worldwide. Stem cell transplantation is a new approach to treat COPD. In this study we report in two cases the use of transplanted stem cells to treat COPD. Methods: Umbilical cord derived stem cells (ModulatistTM) were used in the study. ModulatistTM was prepared according to previous published studies. Two patients with late stage COPD (stage IV) were transfused with Modulatist at a dose of 106 cells/kg. Patients were evaluated by the COPD assessment test (CAT) score as well as the Modified Medical Research Council Dyspnea Scale (mMRC) score, before and after transplantation (1, 3 and 5 months post transplantation). Results: Results showed that ModulatistTM transplantation significantly improved sever COPD, especially after 3 months. At that time point, the two patients receiving ModulatistTM showed a significantly improvement, from late-stage of COPD (stage IV) to stage I. Conclusion: Although these initial results suggest that ModulatistTM transplantation is a promising therapy, more clinical studies in COPD patients are warranted to evaluate efficacy.
Umbilical cord derived stem cell (Modulatist TM ) transplantation for severe chronic obstructive pulmonary disease: a report of two cases.
November 28, 2016
Stem cell drugs: the next generation of pharmaceutical products
Stem cells represent a new treatment option in medicine and pharmacy. Stem cells have been increasingly used for the treatment of many diseases. In fact, they have spurred a new age of medicine called regenerative medicine. In recent years, regenerative medicine has become a new revolution in disease treatment, especially with the use of stem cell drugs. Stem cell drugs refer to live stem cell based products that used as drugs for particular diseases. Unlike autologous stem cell transplantation, stem cell drugs are " off-the-shelf " products that are ready to be used without requirement of any further manipulation. This review aims to summarize some of the approved stem cell drugs, and discuss the revolution of regenerative medicine and personalized medicine. As well, the review will discuss how stem cell drugs have led to a new direction in stem cell therapy, providing a new platform for patient needs.
Stem cell drugs: the next generation of pharmaceutical products.
November 22, 2016
The effects of transplanted cells in stem cell therapy for myocardial ischemia
It is known that myocardial infarction (MI) causes damages to the heart tissue and that present medical therapies, such as medication, stenting and coronary artery bypass surgery, cannot recover the injured heart. Fortunately, advances in stem cell research have brought hope of full heart recovery for myocardial ischemia patients. There have been many studies using cell therapies for myocardial ischemia, from preclinical trials to clinical trials. However, the biggest concern is the effect of transplanted cells in myocardial recovery. This review will focus on analyzing both the positive and negative effects of transplanted cells in myocardial recovery to better understand the underlying biological mechanisms and ways to evaluate safety and efficacy of cell transplantation in myocardial ischemia treatment.
The effects of transplanted cells in stem cell therapy for myocardial ischemia.
December 27, 2016
Expanded autologous adipose derived stem cell transplantation for type 2 diabetes mellitus
Introduction: Type 2 diabetes mellitus (T2D) is the most common form of diabetes mellitus, accounting for 90% of diabetes mellitus in patients. At the present time, althoughT2D can be treated by various drugs and therapies using insulin replacement, reports have shown that complications including microvascular, macrovascular complications and therapy resistance can occur in patients on long term treatment. Stem cell therapy is regarded as a promising therapy for diabetes mellitus, including T2D. The aim of this study was to evaluate the safety and therapeutic effect of expanded autologous adipose derived stem cell (ADSC) transplantation for T2D treatment; the pilot study included 3 patients who were followed for 3 months. Methods: The ADSCs were isolated from stromal vascular fractions, harvested from the belly of the patient,and expanded for 21 days per previously published studies. Before transplantation, ADSCs were evaluated for endotoxin, mycoplasma contamination, and karyotype.All patients were transfused with ADSCs at 1-2x106 cells/kg of body weight.Patients were evaluated for criteria related to transplantation safety and therapeutic effects; these included fever, blood glucose level before transplantation of ADSCs, and blood glucose level after transplantation (at 1, 2 and 3 months). Results: The results showed that all samples of ADSCs exhibited the MSC phenotype with stable karyotype (2n=46), there was no contamination of mycoplasma, and endotoxin levels were low ...
December 29, 2016
Autologous and allogeneic transplantation of adipose derived stem cells have similar efficacy for type 1 diabetes mellitus therapy in mouse models
Abstract
Introduction: Type 1 diabetes mellitus (T1D) disease is caused by lesions or dysfunction of beta cells of pancreatic islets, causing less insulin to be secreted into the blood and thereby increasing glucose levels in the blood. In this study, we evaluated and compared the efficiency of treatment for T1D using autograft and allograft adipose-derived stem cells (ADSCs). Methods: ADSCs were collected from the belly of mice before they were injected using a single dose of streptozotocin (100 mg/kg) to induce T1D. T1D mice were intravenously injected with a dose of 2x106 ADSCs into the tail vein. Therapeutic efficacy was assessed by survival rate, blood glucose levels, serum insulin levels, histology and immunohistochemistry of pancreatic islets. Results: The results showed that both autograft and allograft transplantation of ADSCs demonstrated similarities in mortality rate, blood glucose level, blood insulin level, quantity and size of pancreatic islets. Both transplantations significantly improved T1D mice, which showed a decrease in mortality rate as well as blood glucose level, and increases in blood insulin level, quantity and size of pancreatic islets. Conclusion: The similar results suggest that both autologous and allogeneic transplantations of ADSCs are promising therapy for T1D treatment.
◄
1 / 1
►